Climate change: potential effects of increased atmospheric carbon dioxide (CO2), ozone (O3), and ultraviolet-B (UV-B) radiation on plant diseases.

نویسندگان

  • W J Manning
  • A V Tiedemann
چکیده

Continued world population growth results in increased emission of gases from agriculture, combustion of fossil fuels, and industrial processes. This causes changes in the chemical composition of the atmosphere. Evidence is emerging that increased solar ultraviolet-B (UV-B) radiation is reaching the earth's atmosphere, due to stratospheric ozone depletion. Carbon dioxide (CO(2)), ozone (O(3)) and UV-B are individual climate change factors that have direct biological effects on plants. Such effects may directly or indirectly affect the incidence and severity of plant diseases, caused by biotic agents. Carbon dioxide may increase plant canopy size and density, resulting in a greater biomass of high nutritional quality, combined with a much higher microclimate relative humidity. This would be likely to promote plant diseases such as rusts, powdery mildews, leaf spots and blights. Inoculum potential from greater overwintering crop debris would also be increased. Ozone is likely to have adverse effects on plant growth. Necrotrophic pathogens may colonize plants weakened by O(3) at an accelerated rate, while obligate biotroph infections may be lessened. Ozone is unlikely to have direct adverse effects on fungal pathogens. Ozone effects on plant diseases are host plant mediated. The principal effects of increased UV-B on plant diseases would be via alterations in host plants. Increased flavonoids could lead to increased diseased resistance. Reduced net photosynthesis and premature ripening and senescence could result in a decrease in diseases caused by biotrophs and an increase in those caused by necrotrophs. Microbial plant pathogens are less likely to be adversely affected by CO(2), O(3) and UV-B than are their corresponding host plants. Changes in host plants may result in expectable alterations of disease incidence, depending on host plant growth stages and type of pathogen. Given the importance of plant diseases in world food and fiber production, it is essential to begin studying the effects of increased CO(2), O(3) and UV-B (and other climate change factors) on plant diseases. We know very little about the actual impacts of climate change factors on disease epidemiology. Epidemiologists should be encouraged to consider CO(2), O(3) and UV-B as factors in their field studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactive effects of solar UV radiation and climate change on biogeochemical cycling.

This report assesses research on the interactions of UV radiation (280-400 nm) and global climate change with global biogeochemical cycles at the Earth's surface. The effects of UV-B (280-315 nm), which are dependent on the stratospheric ozone layer, on biogeochemical cycles are often linked to concurrent exposure to UV-A radiation (315-400 nm), which is influenced by global climate change. The...

متن کامل

تأثیر تنش کم آبی، ازدیاد دی‌اکسید کربن و اشعه ماورای بنفش بر صفات کیفی برگ پرچم گندم دوروم ( Triticum turgidum L. var. durum Desf.)

Water deficit, ultraviolet radiation and CO2 concentration enhancement are three environmental stresses that affect nutrition of human in future. This research was conducted in the Research Greenhouse of Faculty of Agriculture, Tarbiat Modares University in 2006, in order to study leaf qualitative traits of durum wheat under different levels of carbon dioxide (400 and 900 ppm), ultraviolet radi...

متن کامل

تأثیر تنش کم آبی، ازدیاد دی‌اکسید کربن و اشعه ماورای بنفش بر صفات کیفی برگ پرچم گندم دوروم ( Triticum turgidum L. var. durum Desf.)

Water deficit, ultraviolet radiation and CO2 concentration enhancement are three environmental stresses that affect nutrition of human in future. This research was conducted in the Research Greenhouse of Faculty of Agriculture, Tarbiat Modares University in 2006, in order to study leaf qualitative traits of durum wheat under different levels of carbon dioxide (400 and 900 ppm), ultraviolet radi...

متن کامل

Olive (Olea europaea L.) plant reactions to atmospheric pollutants and UV-B radiation: current state of the research

Human activities have increased the number of environmental constraints for olive plants. Water, soil and air pollution are rapidly becoming important environmental concerns for plant growth and productivity. In addition to pollution problems, modifications in gaseous composition of the atmosphere, as well as terrestrial solar radiation changes associated with pollution, are the new factors stu...

متن کامل

Interactive effects of nutrient supply and other environmental factors on the sensitivity of marine primary producers to ultraviolet radiation: implications for the impacts of global change

Understanding the effects of global climate change on the algae that form the basis of most aquatic food chains is of paramount importance in our ability to make informed decisions about the future of production systems, marine ecosystems, and the global carbon cycle. Despite the Montreal Protocol to restrict the release of harmful chlorofluorocarbons into the atmosphere, ozone levels have not ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental pollution

دوره 88 2  شماره 

صفحات  -

تاریخ انتشار 1995